Heat kernel expansion for operators containing a root of the Laplace operator

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Kernel Expansion for Operators of the Type of the Square Root of the Laplace Operator

A method is suggested for the calculation of the DeWitt-Seeley-Gilkey (DWSG) coefficients for the operator √ −∇2 + V (x) basing on a generalization of the pseudodifferential operator technique. The lowest DWSG coefficients for the operator √ −∇2 + V (x) are calculated by using the method proposed. It is shown that the method admits a generalization to the case of operators of the type (−∇2 + V ...

متن کامل

Heat Kernel Laplace-Beltrami Operator on Digital Surfaces

Many problems in image analysis, digital processing and shape optimization can be expressed as variational problems involving the discretization of the Laplace-Beltrami operator. Such discretizations have have been widely studied for meshes or polyhedral surfaces. On digital surfaces, direct applications of classical operators are usually not satisfactory (lack of multigrid convergence, lack of...

متن کامل

Heat-kernel coefficients of the Laplace operator on the D-dimensional ball

We present a very quick and powerful method for the calculation of heat-kernel coefficients. It makes use of rather common ideas, as integral representations of the spectral sum, Mellin transforms, non-trivial commutation of series and integrals and skilful analytic continuation of zeta functions on the complex plane. We apply our method to the case of the heat-kernel expansion of the Laplace o...

متن کامل

Heat-kernel coefficients of the Laplace operator on the 3-dimensional ball

We consider the heat-kernel expansion of the massive Laplace operator on the three dimensional ball with Dirichlet boundary conditions. Using this example, we illustrate a very effective scheme for the calculation of an (in principle) arbitrary number of heat-kernel coefficients for the case where the basis functions are known. New results for the coefficients B 5 2 , ..., B5 are presented. ∗Al...

متن کامل

A remark on the Gaussian lower bound for the Neumann heat kernel of the Laplace-Beltrami operator

We adapt in the present note the perturbation method introduced in [3] to get a lower Gaussian bound for the Neumann heat kernel of the Laplace-Beltrami operator on an open subset of a compact Riemannian manifold.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 1997

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.531823